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Abstract: This survey aims to provide insightful and objective perspectives on the research history
of quantitative portfolio management strategies with suggestions for the future of research. The
relevant literature can be clustered into four broad themes: portfolio optimization, risk-parity, style
integration, and machine learning. Portfolio optimization attempts to find the optimal trade-off of
future returns per unit of risk. Risk-parity attempts to match the exposure of various asset classes
such that no single asset class dominates portfolio risk. Style integration combines risk factors on a
security level such that rebalancing differences cancel out. Finally, machine learning utilizes large
arrays of tunable parameters to predict future asset behavior and solve non-convex optimization
problems. We conclude that machine learning will likely be the focus of future research.
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1. Introduction

At a small scale, early-life investors are more likely to engage in riskier portfolio
strategies. However, as they accumulate more capital, the strategies of later-life investors
become more conservative. While most personalized investment strategies focus on an
individual’s risk tolerance, this paper aims to identify the various quantitative investment
strategies available to construct a portfolio with the goal of achieving a high return-to-
risk ratio.

Portfolio management relies on the premise of obtaining the highest return (lowest
risk) possible per unit of risk (for a given return). Markowitz [1] first approached this
problem by treating asset returns as a stochastic process, defining risk as the variance in
returns and creating Mean-Variance Optimization (MVO). The development of MVO is
regarded as the catalyst of modern financial economics and continues to significantly impact
portfolio management in the 21st century. However, the idea that an investor’s utility can
wholly be described as some function of the mean and variance of portfolio returns has
been met with skepticism. Kahneman and Tversky [2] created prospect theory to address
the discrepancy between MVO and actual investor behavior by treating the pain of capital
loss more strongly than the reward of an equally large capital gain. There have since been
many alternative utility functions developed to improve on MVO; however, none have
been as influential. That said, practically implementing MVO has proved problematic, e.g.,
due to errors when estimating the forward-looking parameters and high transaction costs.
Addressing these limitations has been at the core of relevant literature where quantitative
portfolio management is fundamentally an optimization problem.

Changes within society and major economic/financial episodes have often led to
broad-level changes in investment strategies. For example, Risk-Parity (RP) strategies
gained traction due to their wealth-preserving effect during the 2008 Global Financial
Crisis (GFC) [3]. These strategies involved the optimized diversification of a portfolio
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by allocating risk equally across asset classes, which ensured that part of the portfolio
could benefit in the case of economic downturn. Much like MVO, however, the practical
implementation of RP portfolios has many forms, each with their own limitations. More re-
cently, technological advancements have seen the incorporation of novel data analytics into
portfolio management.

With the goal of reducing the reliance on legacy financial theory—that is, to minimize
model bias—Machine Learning (ML) has seen the birth of many new investment strategies.
There are three key ML methods: Supervised Learning (SL), Unsupervised Learning (UL),
and Reinforcement Learning (RL), all of which have shown potential for different research
streams within portfolio management. Although the flexibility of ML can introduce new
points of failure and complexity that may challenge traditional financial frameworks, there
are well-established methods to address these issues [4]. For novel ML models which are
yet to establish a handbook, risks are often mitigated by utilizing large datasets for training,
and model performance is benchmarked against comparable contenders.

Effective implementation of future investment strategies requires accurate and reliable
modeling of asset returns. The performance of a model, whether ML or statistical, is limited
to the data it is provided. Published studies have attempted to make their results robust
by training models on a diverse set of data, such as including different countries, stock
exchanges, and asset classes. However, excess data can impact portfolio performance just
as much as insufficient data. For example, models trained on a high-dimensional global
dataset may not be able to detect peculiarities within a specific region.

While prior reviews evaluate the optimization of portfolios and the use of novel data
analytics in financial markets individually, none comprehensively review quantitative
portfolio management holistically over time (e.g., see Milhomem and Dantas [5], Goodell
et al. [6], and Bartram et al. [7]). This review aims to investigate how strategies used in
portfolio management have historically changed, in part, allowing us to identify possible
future trends. By studying historical changes in portfolio management strategies, this
review will facilitate effective future portfolio management and optimization. This investi-
gation incorporates quantitative analysis of trends through data-driven approaches and
identifies four core research themes from the literature that are intrinsically involved in the
quantitative management of portfolios: portfolio optimization, risk-parity, style integration,
and machine learning.

2. Research Methods

In reviewing the research on portfolio management, rather than using a more tra-
ditional narrative review [8,9], we followed a systematic process to collect and analyze
citations relevant to a research question in an unbiased and replicable manner [10]. In the
current context, this was achieved within the scope of quantitative portfolio management
via a multi-step method depicted in Figure 1.

Table 1 summarizes the filtering method that we use. The initial step is to develop
research questions, using key phrases and themes identified in a preliminary investigation
in the study of portfolio management. Next, the key phrases and themes identified are
used to create a search query within the Scopus comprehensive citation database. Lastly,
matched citations are exported and manually processed via predefined inclusion and
exclusion criteria.

Since it was unlikely that every relevant citation was indexed in the Scopus database,
manual investigations and citation mapping tools (Connected Papers, Research Rabbit)
were used as secondary sources (see https://www.connectedpapers.com/ (accessed on
30 June 2022) and https://www.researchrabbit.ai/ (accessed on 30 June 2022) to utilize
these tools). Some innovative techniques analyzed in this review were sourced from sub-
optimal journals, and a more lenient selection criterion was used accordingly. A bibliometric
analysis was conducted using the Anaconda development environment and the Python 3.10
and Pybliometrics 3.3.0 package. Visualizations of citations and keywords were generated
using VOSviewer version 1.6.18.

https://www.connectedpapers.com/
https://www.researchrabbit.ai/
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Figure 1. Research method flowchart. The start-to-finish process map used to generate the list of
citations for bibliometric analysis, which follows the conceptual steps outlined in Linnenluecke et al. [10].

Table 1. Filtering method table.

Question 1
What is the history of
quantitative portfolio

management?

Research Questions
Question 2

Given the results from Q1,
what should be the focus of
future quantitative portfolio

management research?

Languages All search queries and journal articles will be in English

Research Quality Articles must be published in a A/A*-quality journal
(as per the ABDC database)

Inclusion Criteria Journal articles must be quantitative in nature and relevant
to equity portfolios or their constituent parts

Duplicate journal articlesExclusion Criteria Review papers

Search Query

TITLE-ABS-KEY(“portfolio management”
OR “portfolio optimization” OR “investment portfolio”
OR “portfolio strateg*” OR “portfolio selection”
OR “mean-variance” OR “portfolio choice”
OR “optimal portfolio” OR “portfolio analysis”
OR “modern portfolio theory” OR “diversification strategies”
OR “markowitz” OR “risk parity” OR “volatility managed”
OR “style integration”) AND DOCTYPE(ar)
AND SRCTYPE(j) AND LANGUAGE(English)
AND SUBJAREA(ECON)

3. Initial Results

A total of 473 papers on quantitative portfolio management were found when using
the search terms and inclusion/exclusion criteria defined in Table 1. A mix of automated
and manual systematic analysis was employed to identify a broad view of literature with
respect to key dates, themes, citations, and phrases pertaining to quantitative portfolio
management. Figure 2 shows that research on portfolio management has steadily increased
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since the 1970s, with a clear and strong upward trajectory since the turn of the century.
We speculate that this trend occurred as a result of what is colloquially referred to as the
technological boom of the 1990s, which caused an influx of investment in technological
advancements [11]. This change in technology not only influenced financial markets but
also created new directions for portfolio management research. For example, there ap-
peared to be a significant increase in quantitative portfolio management research following
the GFC in 2008 (Figure 2). This growth can be attributed to the increased demand for
quantitative measures to improve the financial models, whose faults were deemed to be
the reason for severe market failure [12]. The observed effects of the crisis were a revelation
for the financial industry that more sophisticated modeling was required to account for the
unexpectedly high asset correlations during the market downturn. The demand for im-
proved statistical capabilities and advanced technological capabilities to run these models
in financial markets has been growing since the GFC.

Figure 2. Portfolio management research outputs over time. From the final citation list, yearly quanti-
tative portfolio management research outputs plotted alongside large market events to contextualize
the academic progression of the field.

As investment strategies change, so too does portfolio management. The bibliometric
analysis revealed four broad research themes within quantitative portfolio management
over the time period studied (Figure 3). The themes are listed as they chronologically
appeared in the literature, and they are not mutually exclusive:

1. Portfolio optimization
2. Risk-parity
3. Style integration (factor investing)
4. Machine learning

Figure 3. Portfolio management research outputs by theme over time. An adjustment of Figure 2 to
contextualize the academic progression of each research theme that was identified.
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Portfolio optimization has remained prevalent in the literature since its inception,
marked by the seminal development of MVO by Markowitz [1], as seen in Figure 3. This
endurance can be explained by the fundamental similarities between portfolio management
and risk management, where the goal is to acquire an optimal risk-to-reward trade-off.
While theoretically compelling, practical limitations mean that portfolios are almost never
constructed without constraints or other preprocessing techniques.

The second theme, risk-parity strategies, has also been well-studied since its first
mention in Qian [13] and has especially seen an influx in research activity following the
GFC. Risk-parity portfolios attempt to balance risk contributions across asset classes by
weighting them as inversely proportional to their risk. Interestingly, while risk-parity
strategies have been used within the industry for a long time, the academic community
only recently formalized the concept. For example, the first risk-parity fund, the All Weather
asset allocation strategy, was launched by Bridgewater Associates in 1996 [14]. In contrast,
the first academic analysis of the concept was only published by Qian [13] in 2005 and
Maillard et al. [15] in 2010. Since the official recognition of risk-parity, it continues to be
prevalent within the literature, as shown in Figure 3.

Moving past the GFC into the modern age of technology, there also grew a need to
validate investment strategies with ever-growing datasets and investment opportunities.
This was achieved by utilizing historical data for back-testing and less commonly simulated
data as portfolio management shifted into the age of big data. Financial datasets grow
in width faster than they grow in length, creating the need for practical dimensionality-
reduction techniques that are capable of investing in tangible assets. To address this
problem, investment funds harvest a unique source of returns packaged into a single asset,
allowing portfolio managers greater risk management control. Style integration seeks
to combine many styles into a single portfolio at a security level, which allows for trade
differences to cancel out, in turn strengthening the performance. This intuitive concept has
been met with skepticism, however, with some research suggesting there is no statistically
significant difference in returns when compared to style mixing, which is the combination
of preconstructed factor portfolios [16]. For example, consider a portfolio manager creating
an equity investment portfolio that consists of exposures to two different styles/risk factors,
there is “value” and “quality”. With style integration, since implementation of the portfolio
is performed at the stock level, the value style selects a long position in a specific stock such
as Alphabet (GOOG), and the quality style selects a short position in the same stock (i.e.,
GOOG). As such, there will be no exposure in the investment portfolio to Alphabet, as trade
differences cancel out, and no transaction costs are incurred, since the investment portfolio
is constructed at the stock level. Alternatively, style mixing describes when the portfolio
manager constructs an investment portfolio by purchasing a mix of readily available, pre-
constructed risk factor or style portfolios such as a value ETF or a quality ETF rather than
constructing the investment portfolio at the security level. Both of these ETFs would have
incurred transaction costs, one in taking a long position in GOOG and the other in taking a
short position in GOOG. As such, trade differences lead to increased transaction costs with
no effective benefits, as the opposing trade positions cancel out.

Finally, ML is perhaps the most unique theme out of the four due to its ability to
alter assumptions made by legacy financial theory and provide methods to quantify novel
datasets. ML is a broad definition encompassing any statistical model capable of tuning its
own parameters through learning processes without human intervention. While there is
huge potential in utilizing ML for financial modeling, there has been minimal published
work, likely due to the increased risk associated with unexplainable complexities (See
Figure 3). ML, and its many subcategories discussed in detail later in this review, has
impacted all other research themes within quantitative portfolio management.

Figure 4 displays a visual nodal mapping of the most-cited papers within the quan-
titative portfolio management literature. This figure shows a mapping of papers where
the size of each node represents the number of citations, the connecting links represent
where these citations are from, and the closeness of each node represents the degree of
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similarity. Despite changes in portfolio management research themes over time, the MVO
model appears to still be highly topical across all fields of portfolio management, evi-
denced by Markowitz [1] being the most-cited author by a large margin. Another highly
influential portfolio management paper was written by DeMiguel et al. [17], who empir-
ically examined 14 portfolio optimization techniques to generate performance metrics
for 8 different datasets. DeMiguel et al. [17] concluded that no optimization technique
outperformed the 1/N portfolio, which raises the question: why spend so much time on
developing these complex theoretical models if they do not work? Tu and Zhou [18] and
Kirby and Ostdiek [19] contested DeMiguel’s conclusion by asserting that his poor results
were primarily due to research design, providing empirical evidence that, when relevant
risks are considered, an investor can outperform 1/N. This contrary result brings hope to
modern portfolio management and marks a new era.

Figure 4. Mapping of the most-cited papers where arbitrary auto-generated clusters are highlighted
with different colors [1,17,18,20–69].

Figure 5 shows a visual nodal mapping of key phrases used within the title or abstract
of all papers examined, where the size of each node reflects the number of key phrase
occurrences. The numbers of occurrences appear to be stable throughout the literature,
with no nodes standing out. However, it is clear that “optimization” lies at the center of all
portfolio management, and surrounding key phrases are used to guide the discussion, both
in terms of content and terminology.

While this analysis is helpful, it does not provide the granularity required to mean-
ingfully answer the two research questions outlined in Table 1. Accordingly, the following
sections will extrapolate on these broad concepts to place them in the context of the current
state of research.
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Figure 5. Mapping of key phrases in title and abstracts where arbitrary auto-generated clusters are
highlighted with different colors.

4. Research Themes
4.1. Portfolio Optimization

Portfolio optimization is the process of defining a utility function to be used as a
quantitative metric of investor satisfaction and then constructing a portfolio of assets such
that this function is maximized. A loss function is the inverse of utility, where an investor
wants to maximize their utility and minimize their loss. As expected, utility functions are
unique to each investor to reflect their risk tolerance. While not utilized in this review,
an array of literature explores human psychology within the context of financial markets,
which can be used to refine investor utility. Although quantitative strategies can use
individualized utility, the literature focuses on generalized utility estimates that can be
applied across populations with only minor parameter changes. While a broad range of
utility functions exist within the literature, the most notable from this review are outlined
in Table 2.

Table 2. Utility function publications.

Study Utility Function

Markowitz [1] Mean-variance
Roy [70] Safety first
Kelly [71] Kelly criterion
Kahneman and Tversky [2] Prospect theory (or loss aversion)
Gul [72] Disappointment aversion
Sundaresan [73] Habit utility
Abel [74] Catching up with the Joneses
Knight [75] Uncertainty aversion
Rockafellar and Uryasev [76] CVaR optimisation

4.1.1. Mean-Variance Optimization

Mean-Variance Optimization (MVO), as established by Markowitz [1], assumes that
investors are risk-averse, requiring greater reward for greater risks taken. Since the mid-
20th century, portfolio managers and academics have used MVO to create optimized
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risk-adjusted portfolios, making it the most prolific utility function (Figure 2). The mean-
variance function is defined as follows:

U = µ − γ

2
σ2 (1)

where µ and σ2 are the mean and variance, respectively, and γ is a tuning parameter that
represents an investor’s risk aversion. This function incorporates the assumption that
two assets with the same mean and variance of returns should be equally desirable to an
investor. It is important to note that the function does not assume the normal distribution of
asset returns, as is commonly mistaken. Mean-variance utility is arguably short-sighted in
scope, lacking the ability to accurately estimate an investor’s utility by failing to recognize
that investors are likely interested in many other performance characteristics, e.g., skewness.
The exploration of alternative utility functions has been prevalent within the literature to
address these limitations.

4.1.2. Conditional Value-at-Risk Optimization

Value-at-Risk (VaR) is a downside risk measure quantifying the maximum amount of
capital to be lost within a given timeframe with a certain degree of confidence. Under the
condition that losses exceeding VaR signify an extreme downside event, Conditional Value-
at-Risk (CVaR) is the expected shortfall defined by the mean of all conditional returns [76].
Notably, VaR has undesirable properties for optimization; e.g., it is not a coherent risk
measure, so efficient linear programming techniques cannot be utilized [77]. Since the
initial introduction of VaR as a risk measure, advancements in non-linear programming
techniques have been made. However, they add unnecessary complexity. In contrast, CVaR
satisfies all properties of a coherent risk measure and will always be equal to or greater than
VaR, making it a reliable estimation of VaR. For loss function minimization, Rockafellar
and Uryasev [76] suggest approximating CVaR using a Monte Carlo simulation from an
estimated distribution:

min
(w,α)

α +
1

q(1 − β)

q

∑
k=1

[−wTrk − α]+ (2)

where

[t]+ =

{
t when t > 0,
0 when t ≤ 0.

α represents VaR, β is the degree of confidence, q is the number of generated samples,
w is portfolio weights, rk is the kth vector of simulated returns, and 1 is a vector of ones.
Low et al. [78] applies CVaR minimization to a portfolio of 12 US indices using a range of
distribution estimation techniques to account for the higher asset correlation during bear
markets. They find that CVaR optimization, complimented with a copula-based depen-
dency structure, effectively targets down-side risk aversion and outperforms multivariate
normal alternatives.

4.1.3. Kelly Portfolio Optimization

The Kelly criterion, first published by Kelly [71], formulates the optimal portion of
wealth to place on a risky bet. When applied to asset allocation where there exists a universe
of securities with a distribution of expected returns, the Kelly criterion can be rephrased
as the optimization of long-term wealth. That is, a Kelly-optimal portfolio maximizes
the expected log return. Applying this rule to a single-asset environment results in the
following equation:

f ∗ =
µ − r

σ2 (3)
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where f ∗ is the fraction of wealth to invest, µ and σ2 are the mean and variance of asset
returns, respectively, and r is the risk-free rate of return.

Although the Kelly criterion aims to optimize an investor’s utility, it conceptually
departs from the traditional risk-to-reward trade-off that much of the literature focuses on.
Although it may sound enticing to optimize long-term wealth, the fundamental lack of risk
management in the unaltered Kelly criterion may lead to significant short-term drawbacks.
It is unclear how long an investor must commit to such a strategy before it pays off, as the
‘long-term’ might be longer than the investor’s lifespan. Despite these challenges, the Kelly
criterion has been meaningfully implemented in a variety of different ways with added
constraints [79].

4.1.4. Other Utility Functions

Safety-first utility [70] purports to invest only in safe assets until all liabilities are
met, then significant risks can be taken for each additional dollar. Prospect theory [2] and
disappointment aversion [72] are asymmetric utility functions that assume an investor
will feel the pain of downside risk more than the pleasure of upside potential. Habit
utility [73] assumes that once an investor’s level of wealth, and therefore lifestyle, is
ingrained as a habit, they become more risk-averse to avoid any lifestyle downgrades. The
’catching up with the Joneses’ utility [74] defines risk relative to other investors; portfolio
managers cannot control business cycles, but they can benchmark their performance to other
market participants. Finally, uncertainty aversion [75] treats the accuracy of probability
density function estimates as a risk metric.

Many utility functions beyond mean-variance are preferred frameworks for investor
behavior. However, while these functions are often referenced as guiding concepts, they
are rarely used directly for empirical validation. To bridge the gap between behav-
ioral concepts and real-world strategies, research has been directed toward including
higher-order moments in the portfolio construction procedure [2,78,80,81]. In particular,
Adler [81] introduced full-scale optimization, a practical procedure designed to incorporate
higher-order moments into the portfolio selection process. Adler [81] finds that full-scale
optimization outperforms MVO, even out-of-sample, laying the foundation for practical
optimization of higher moments.

Despite the compelling results of full-scale optimization, mean-variance utility has
persisted as the dominant function in academia, primarily due to the existence of a closed-
form solution and the convenience of implementing widely available linear programming
methods. Mean-variance utility also provides a straightforward estimate of investor utility
and can serve as the foundation of a broader strategy. As a result, the portfolio optimization
literature has primarily focused on improving the limitations of MVO rather than on
developing new utility functions.

The main downside of MVO is its underperformance in out-of-sample backtests,
making it challenging to implement as a real-world strategy [17]. Primarily, this is due
to the forward-looking nature of portfolio management. Future means and variances of
asset returns are typically estimated using historical data, where the resulting estimation
error leads to performance degradation. In addition, the transaction costs accrued from
large swings in portfolio weights lead to poor out-of-sample performance. Improving these
limitations has been a large focus of the MVO literature since its inception, where Table 3
identifies major contributions to the literature that seek to improve estimation error.

Many of the estimation improvements in Table 3 come from shrinking the optimization
towards a trusted reference point. These methods are discussed below; however, a notable
alternative approach developed by Demiguel [82] and Brodie [83] is to add a regularization
penalty within the optimization procedure to stabilize the output weights. Regularization of
MVO weights has resulted in lower transaction costs and better risk-adjusted performance
that persists out-of-sample [82]. Due to its strong results, regularization is widely used in
industry [84].
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Table 3. Selected estimation error publications.

Study Contribution

Black and Litterman [85] Black–Litterman model
Jorion [86,87] Bayes–Stein approach
Pastor [88], Pastor and Stambaugh [89] Data-and-model
MacKinlay and L’uboš Pástor [90] Missing factor model
Kan and Zhou [91] Kan and Zhou three-fund portfolio
Tu and Zhou [18] Combined portfolios
Demiguel [82], Brodie [83] Regularization of portfolio weights

In addition to estimation error, there is the risk of over-fitting a portfolio strategy to
historical data such that the backtested performance is an unreliable representation of likely
future performance. Although only one historical sequence occurs in reality, numerous
other probable historical scenarios could have unfolded but did not. Using Monte Carlo
simulations to generate market data, a portfolio manager is able to evaluate the strategy in
a wide array of ‘what if’ scenarios. Should the strategy perform poorly in the occurrence of
a probable future market event, it can be modified to account for such scenarios. However,
generating realistic market data has challenges of its own, as there will continue to be
estimation errors when specifying the distribution of simulated data. Nonetheless, market
simulations are a helpful tool utilized by many of the empirical studies referenced in
this review.

4.1.5. Bayesian Estimation

Ever since the seminal work of Bayes [92], Bayesian estimation techniques have been
utilized across virtually all research fields. The idea is to iteratively update an estimated
Probability Density Function (PDF) as new information becomes available, shrinking the
prior to the posterior by minimizing loss, which is usually a function of residuals. When
implemented on large datasets, the posterior will likely shrink to a close approximation
of the true PDF, regardless of the initial prior. However, financial time series datasets
are notoriously short and high in dimensionality, causing the initial prior to impact the
resulting posterior significantly [17]. Therefore, the financial literature has implemented
Bayesian methods with this subjectivity in mind.

The Bayes–Stein approach developed by Jorion [86,87] is a portfolio application of
the James–Stein estimator theorized by Stein [93] and James and Stein [94] which attempts
to minimize the estimation error of mean asset returns. The sample mean is shrunk
to the sample minimum-variance portfolio mean, effectively limiting the exposure to
mean estimation risk by diversifying into the minimum-variance portfolio where no mean
estimation is needed. Estimating mean return is notoriously more difficult than return
variance, so the main contribution of the Bayes–Stein approach is to minimize the mean
estimation risk. However, Jorion also uses traditional Bayesian estimation techniques to
minimize the variance estimation risk.

The data-and-model approach developed by Pastor [88] and Pastor and Stambaugh [89]
refines the Bayes–Stein approach by using an asset pricing model to estimate future asset
returns, which are shrunk to the sample mean via a ratio of model mispricing variance and
highest Sharpe ratio of factor portfolios. This refined methodology essentially allows an
investor to select an asset pricing model and their prior belief of its performance, then these
subjective inputs are fine-tuned via empirical observation.

The Black–Litterman model, developed by its namesake in [85], shrinks investor
beliefs about future asset returns towards a benchmark portfolio. While older and less
sophisticated than the data-and-model approach, the Black–Litterman model is practical
for real-world applications and allows for greater flexibility, with subjective inputs applied
directly to constituent assets. An investor can pick a benchmark portfolio, then input any
divergent beliefs about future asset returns and corresponding uncertainty metrics into the
model to generate posterior means and variances.
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Although these Bayesian methods are conceptually compelling and improve sample-
based MVO, they continue to underperform relative to the 1/N portfolio during out-of-
sample backtests [17]. However, the Black–Litterman model is an exception, where the
accuracy of investor beliefs primarily drives performance [95]. An alternative method of
improving estimation risk is treating it no differently than any other risk factor, such as the
diversification of uncorrelated assets. Kan and Zhou [91] formalize this idea by creating a
three-fund portfolio where investments are divided across a risk-free asset, the tangency
portfolio, and the minimum-variance portfolio. As a result, the estimation error for mean
asset returns is diversified because the minimum-variance portfolio only needs to estimate
variances. In addition, performance is significantly increased compared to sample-based
MVO, providing evidence that estimation risk should be diversified.

Tu and Zhou [18] expands on this idea to combine other sophisticated Markowitz-
related strategies with the 1/N portfolio. Although promising results are found, beating
the 1/N portfolio remains an elusive task. Some have contested the idea that MVO is not
practically useful by asserting that estimation error is largely caused by the over-reliance on
rolling short-term samples [96]. However, large time frames are not always obtainable, so
portfolios are often implemented with constraints, or unconstrained optimization is shrunk
to a constrained portfolio, as is the case in Kan and Zhou [91] and Tu and Zhou [18].

4.1.6. Multi-Period Optimization

All the portfolio optimization techniques discussed thus far are fundamentally single-
period methods. In single-period approaches, optimal portfolio weights are applied for
the current rebalancing period only, disregarding inter-temporal dependencies. Although
the greedy approach may still be optimal in cases with optimal substructure, path inde-
pendence, or myopic investor utility, these assumptions often do not hold in real-world
scenarios [97].

To solve for the multi-period portfolio, dynamic programming is utilized, working
backwards from the portfolio’s termination date to the present. A commonly used analogy
is to imagine an agent randomly placed on a grid tasked with reaching a reward square by
moving one square each period. Working backwards from the reward square, the utility
of occupying each square is calculated iteratively by discounting the utility of previous
adjacent squares. Once the utility of each square has been calculated, the agent can take
one step to occupy the adjacent square with the highest utility, which is also one step closer
to the reward square.

This concept, formalized with the Bellman equation from Bellman [98], becomes a bit
more complex when the non-deterministic nature of financial markets is included. The
stochastic Bellman equation is given as follows:

V(s) = max
a

[
R(s, a) + γ ∑

s′
P(s′|s, a)V(s′)

]
(4)

where V(s) is the value of state s, R(s, a) is the reward for taking action a in state s, γ is a
discount factor, P(s′|s, a) is the probability of arriving in state s′ after taking action a from
state s, and V(s′) is the value of state s′.

The dynamic programming solution is theoretically sound. It also presents new chal-
lenges to overcome. Notably, multi-period portfolio decisions are path-dependent, meaning
that decisions made today will effect the available opportunities tomorrow. Therefore, if
an unexpected structural market change occurs, a multi-period portfolio may be perma-
nently impaired. Moreover, dynamic programming solutions often suffer from the “curse
of dimensionality,” rendering most multi-period solutions computationally intractable.
Nonetheless, approximate dynamic programming and simplified multi-period approaches
have shown promise in specific contexts where they are applied, especially goal-based
robo-advisors [99,100].
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4.2. Risk-Parity

Risk-parity is a constrained mean-variance portfolio where risk is equally distributed
across asset classes, similar to how an investor might diversify capital equally across
assets with the 1/N portfolio. In the same way that the minimum-variance portfolio is
constrained to eliminate the estimation of mean returns, risk-parity is further constrained
to eliminate the covariance estimates, leaving only the individual asset return variances.
Although risk-parity is not a new concept, there is a scarcity of literature on the topic
prior to its formalization by Qian [13]. Risk-parity has since been empirically tested.
Maillard et al. [15] used global data across 13 asset classes and concluded that risk-parity
outperforms the 1/N and minimum-variance portfolio on a risk-adjusted basis, highlighting
the need for further research. Notable risk-parity contributions observed in this review are
shown in Table 4 and explored below.

Table 4. Risk-parity publications.

Study Contribution

Qian [13] Formalisation of risk-parity
Bhansali [101] Risk factors used instead of assets
Kirby and Ostdiek [19] Volatility timing and reward-to-risk timing
Bhansali et al. [102] Factor risk-parity
DeMiguel et al. [103] Conditional mean-variance multifactor portfolio

4.2.1. Volatility Timing (VT)

Kirby and Ostdiek [19] developed a simple risk-parity framework by weighting assets
inversely to their volatility on any given time step. Therefore, as asset variance increases,
the weighting to that asset will shrink quadratically. A tuning parameter is added to
modify how aggressively this strategy responds to volatility shocks, which indirectly
tunes turnover and transaction cost tolerance. The formalization of VT can be represented
as follows:

ω̂it =
(1/σ̂2

it)
η

∑N
i=1(1/σ̂2

it)
η

(5)

where ω̂it and σ̂2
it are the estimated weight and volatility of an asset i at time t. N is the

number of assets to be considered, and η is the volatility sensitivity parameter. Kirby and
Ostdiek [19] implemented this strategy using US equities, and it outperformed the 1/N
portfolio on a risk-adjusted basis. The simplicity of VT provides a promising starting point
for further research.

4.2.2. Reward-to-Risk Timing (RRT)

Reward-to-risk timing (RRT), also developed by Kirby and Ostdiek [19], is an exten-
sion to the VT strategy. Under the RRT framework, asset weights are in a ratio to mean
volatility and returns; an increase in volatility will not affect asset weights, provided there
is a proportional increase in expected returns. Reintroducing mean asset returns creates
extra estimation risk, potentially resulting in similar limitations identified in the portfolio
optimization section above. To minimize estimation risk, mean asset returns are constrained
to positive values, which is formalized as follows:

ω̂it =
(µ̂+

it /σ̂2
it)

η

∑N
i=1(µ̂

+
it /σ̂2

it)
η

(6)

where µ̂it ≥ 0 is the mean returns of asset i at time t. This is a very intuitive strategy, where
Kirby and Ostdiek [19] conclude that it shows more promise than VT on their dataset of US
equities. The results persisted when implemented on UK equities when transaction costs
were considered [104].



Mathematics 2024, 12, 2897 13 of 25

4.2.3. Factor Risk-Parity (FRP)

The original concept of spreading risk across asset classes makes little sense if these
asset classes are strongly correlated to each other compared to alternative asset cluster-
ing techniques (Hierarchical Risk Parity (HRP) is also a prominent implementation of
risk-parity which uses hierarchical clustering techniques in place of traditional risk fac-
tors; see the machine learning section below for more details). There is an abundance
of research focusing on the discovery of uncorrelated risk factors that should increase
diversification benefits compared to the naive assumption that separate asset classes are
uncorrelated. Bhansali [101] explores this idea and concludes, among other things, that risk
factor clustering is essential for a risk-parity portfolio to be practical.

Bhansali et al. [102] implemented FRP using nine asset classes and Principal Com-
ponent Analysis (PCA) for factor identification. They found that asset-based risk parity
results in portfolios concentrated on few risk factors that are not sufficiently diversified.
Moreira and Muir [105] follows a similar method and applies FRP to a suite of traditional
factor portfolios with promising results. However, further research by Cederburg et al. [69]
and Barroso and Detzel [106] argues that Moreira’s results underperform out-of-sample
and do not survive friction costs. These are the same issues faced when implementing
MVO portfolios, casting doubt on the efficacy of FRP.

4.2.4. Conditional Mean-Variance Multifactor Portfolio

To overcome the limitations associated with FRP, a Conditional Mean-Variance Multi-
factor (CMVM) portfolio was developed by DeMiguel et al. [103], where factor portfolio
weights change via a parametric function of market volatility. The parameters are opti-
mized using a modified mean-variance utility function adding a transaction cost value,
which can be expressed as follows:

min
η≥0

γ

2
η⊤Σ̂η − µ̂⊤η + TC(η) (7)

where γ is a risk-aversion parameter, µ̂⊤η and η⊤Σ̂η are the extended mean and variance
of portfolio returns, and TC(η) is a function for transaction costs (transaction costs are
strictly defined in DeMiguel et al. [103], who borrow the bid–ask spread method from Abdi
and Ranaldo [107]. However, the transaction cost method by itself is not a novel idea, and
a portfolio manager can implement any function they please). To unpack this optimization
into its different components, consider the weight of factor k at time t, such that

θkt = ak + bk
1
σt

(8)

where ak and bk are affine function parameters to be optimized, and σt is the variance of
the market risk factor returns. Therefore, the portfolio returns can be expressed as follows:

rpt =
K

∑
k=1

rktθkt =
K

∑
k=1

rkt

(
ak + bk

1
σt

)
(9)

where rkt is the returns for factor k at time t. Finally, portfolio returns can be expressed
in matrix form to demonstrate the usage of the extended factor-weight vector η seen in
Equation (7). Portfolio return is derived in matrix form as follows:

rpt = r⊤ext,tη (10)
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where

rext,t =



r1,t
r2,t

...
rK,t

r1,t
1
σt

r2,t
1
σt

...

rK,t
1
σt



, and η =



a1
a2
...

aK
b1
b2
...

bK


. (11)

The CMVM portfolio was implemented using nine risk factor portfolios constructed
using US equities. Compared to other risk-parity strategies, the CMVM performed well,
particularly in periods of high market volatility. This provides an optimistic outlook for the
future of FRP strategies and outlines a potential future direction of research.

4.3. Style Integration

Investment styles and factors are often used interchangeably to denote unique sources
of risk impacting any given asset. Many asset pricing models use this concept to calculate
the price of an asset as the combined exposure to each risk factor (see CAPM [108,109],
Fama-French Three-Factor [110], Arbitrage Pricing Theory [111], Carhart Four-Factor [112],
Fama-French Five-Factor [113]). In addition, some investment funds specialize in a single
investment style to harvest the returns of a given risk factor. However, if an investor wants
diversified exposure to various investment styles, they have two options. First, they can
apply optimal weights to many pre-constructed specialist investment funds, dubbed style
mixing; or second, they can construct an array of style portfolios from a universe of assets
and then integrate each portfolio such that trade differences of individual assets cancel out,
dubbed style integration [114].

Style integration was first introduced by Frazzini et al. [115], who hypothesized its
inherent benefit of lower transaction costs and therefore better performance compared to
style mixing. Three US risk factor portfolios were individually analyzed and compared
against an integrated portfolio of these same factors. They concluded that style integration
provides excess risk adjusted returns, marking the inception of another potential portfolio
strategy. Some doubt has since been cast on the claim that style integration provides lower
transaction costs compared to style mixing; an intuitive concept that has been empirically
challenged by Leippold and Rueegg [16].

Any portfolio construction strategy that combines many sub-portfolios can be imple-
mented as a style integration approach, provided that the asset weights of each sub-portfolio
are known. For example, an investment fund may not disclose its holdings, making style
integration impossible. Many portfolio management studies are applied directly to a uni-
verse of assets or rely on preconstructed factor portfolios, making their method unsuited
for style integration. However, existing methods often require minimal refinements to
conform to the style integration framework. This means that many familiar strategies are
yet to be tested and formalized in a style integration framework. For style integration
strategies that have been formalized in the literature, Fernandez-Perez et al. [116] provide a
comprehensive empirical analysis by applying five styles to a range of US futures contracts,
currency futures, and US equities for robustness checks. Performance summaries of style
integration strategies will be in reference to this study, with relevant contributions shown
in Table 5.
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Table 5. Showcased style integration studies.

Study Contribution

Fitzgibbons et al. [114] Equal Weight Integration (EWI)
Brandt et al. [117]

Optimal Integration (OI)Fischer and Gallmeyer [118]
Ghysels et al. [119]
DeMiguel et al. [120]
Barberis and Shleifer [121] Rotation-of-Styles Integration (RSI)

Fernandez-Perez et al. [116]

Volatility Timing Integration (VTI)
Cross-Sectional Pricing Integration (CSI)
Style Momentum Integration (SMI)
Principal Components Integration (PCI)

4.3.1. Equal Weight Integration

Fitzgibbons et al. [114] first introduced the Equal Weight Integration (EWI) to equally
weight all styles, w = 1/K, where K is the number of investment styles being investigated.
The intuition of this strategy is similar to the 1/N portfolio, where an investor attempts to
diversify equally across the universe of assets. If the universe of assets to be explored does
not have homogeneous risk factor exposure, the 1/N portfolio will overweight the more
pervasive risk factors, as they will be prominent in a large percentage of the total assets.
EWI solves this problem by equalizing the exposure of each risk factor, then it integrates all
factors into a single portfolio constituting the universe of assets. Much like the benchmark
usage of the 1/N portfolio for optimization, the EWI strategy is used as the benchmark for
other style integration techniques.

4.3.2. Optimal Integration

The Optimal Integration (OI) strategy formalized in Fernandez-Perez et al. [116] opti-
mizes investor utility by maximizing the function of expected excess style returns,
Et[U(∑K

k=1 ωkrk,t+1)], where ωk is the weight of kth style portfolio and rk,t+1 is the expected
return at time t + 1 (Brandt et al. [117], Fischer and Gallmeyer [118], Ghysels et al. [119],
DeMiguel et al. [120]). The core idea is to optimize a set of style portfolio investments, so any
optimization strategy discussed above could be adapted for use under an OI framework.
While OI should theoretically be more robust than direct asset optimization, estimation risk
still limits portfolio performance. Although OI significantly underperforms relative to the
EWI benchmark, there exists room for improvement, as many optimization techniques are
yet to be explored within the OI research stream.

4.3.3. Style Momentum Integration and Rotation-of-Styles Integration

The Style Momentum Integration (SMI) and Rotation-of-Styles Integration (RSI) strate-
gies, introduced by Fernandez-Perez et al. [116] and Barberis and Shleifer [121], respectively,
assume style performance momentum and allocate all available capital to the style with the
highest excess return and Sharpe ratio, respectively, obtained from the previous time step.
These strategies would likely be impractical if constructed using style mixing due to the
necessity to liquidate the whole portfolio before rebalancing. However, due to the style
integration framework, SMI and RSI have comparable turnover to other style integration
strategies, making them viable. SMI performs marginally better than RSI, which both
marginally underperform the EWI strategy. The core idea is to find the highest-performing
style at the current time step, then allocate all capital to it. Although many variations of
these strategies are yet to be tested, they will likely only be useful if future style utility can
be estimated accurately.

4.3.4. Cross-Sectional Pricing Integration

The Cross-Sectional Pricing Integration (CSI) strategy [116] identifies the explanatory power
of style portfolios on the cross-section of expected returns of a universe of assets, and styles
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with greater explanatory power are weighted more heavily. Fernandez-Perez et al. [116] imple-
mented CSI by running a simple Ordinary Least Squares (OLS) regression over the previous
60 months of futures contracts with K style portfolios as independent variables, then the
estimated style betas were used for another OLS regression where a function of the resulting
R2 was used to calculate style weights. CSI underperforms relative to EWI, SMI, and RSI,
but due to there being many moving parts, CSI might be improved by minor methodology
changes (e.g., non-linear regressions).

4.3.5. Principal Component Integration

Fernandez-Perez et al. [116] introduced the Principal Components Integration (PCI)
strategy, which finds m principal components that explain at least τ percent of excess style
portfolio returns then computes style weights as a function of the explanatory power of the
eigenvectors. Reducing investment decisions into their constituent styles, as is the goal of
style integration, is effectively a dimensionality reduction technique. However, this does
not guarantee optimal reduction, so the core idea of PCI is to further reduce style return
dimensionality by isolating the most important principal components. PCI has the highest
turnover of style integration strategies reviewed and underperforms compared to EWI,
SMI, RSI, and CSI. Only five styles were explored by Fernandez-Perez et al. [116], so it is
hypothesized that performance may improve as the number of style portfolios increases
due to the greater needs of dimensionality reduction.

4.3.6. Volatility Timing Integration

Fernandez-Perez et al. [116] introduced the Volatility Timing Integration (VTI) strategy,
which weights styles inverse to their historic variance; a style integration approach to the
Kirby and Ostdiek [19] VT model discussed above. Adopting a key benefit of a risk-parity
approach, VTI has the lowest turnover of any style integration strategy explored. However,
the overall performance is disappointing with negative Sharp, Sortino, and certainty
equivalent ratios. VTI is the worst-performing style integration strategy explored by a
significant margin. Style integration performance should roughly match the underlying
model, so the robust multifactor risk-parity approaches explored above would likely
improve performance.

4.4. Machine Learning

Machine Learning (ML) is a field of statistics that allows computers to learn patterns
contained within data. For example, Ordinary Least Squares (OLS) is often considered
a rudimentary machine learning model, as it learns the provided dataset by minimizing
the sum of squared errors. More robust ML models exist, each with their contributions
and drawbacks depending on the type of problem a practitioner wants to solve. The
more complex models often have the benefit of less model bias; that is, less reliance on
human-defined behavior. However, they suffer from high variance; that is, overfitting to
noisy data due to overparameterization. Academia has been slow to adopt many novel ML
techniques due to their unconstrained nature and perception of behaving as a black box.
de Prado [4] challenges these perceptions and suggests that ML will be an invaluable tool
to process complex datasets that have not been available in the past.

It would be impractical to document an exhaustive list of ML models used for portfolio
management due to the large number of different models and variations thereof. Instead,
an overview of topical models is provided, along with some examples of their usage. In
brief, there are three types of ML models: supervised learning, unsupervised learning,
and reinforcement learning. Supervised learning models, such as elastic-nets and random
forests, require labeled data to generate regression or classification outputs. Unsupervised
models, such as Convolutional Neural Network (CNN) and hierarchical clustering, can
identify unlabeled patterns without intervention. Finally, Reinforcement Learning (RL)
models are designed to interact with their environment, with positive (negative) reinforce-
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ments applied in response to desirable (undesirable) behaviors. Notable ML publications
included in this review are outlined in Table 6 and discussed below.

Table 6. Showcased machine learning studies.

Study Contribution

Zou and Hastie [122] Elastic-net
Ho [123] Random forests
Chen and Guestrin [124] Extreme gradient boosting
Lundberg and Lee [125] Shapley additive explanations
Jiang et al. [126] Reinforcement learning portfolio optimization
Raffinot [127] Hierarchical clustering
Jiang et al. [128] Computer vision price signaling
Elkind et al. [129] Panic selling behavioral analysis

4.4.1. Elastic-Net

The elastic-net model developed by Zou and Hastie [122] is a regularized OLS model
that combines lasso and ridge regression penalties to desensitize the model to unimportant
variables. The variable penalties λ1 and λ2 are often found by executing a k-fold cross-
validation of data such that λ minimizes model variance. The primary difference between
lasso and ridge regression is that lasso regression can shrink variable coefficients to 0, while
ridge regression can only shrink variable coefficients asymptotically close to 0. Elastic-nets
can replace OLS wherever linear or logistic regression is required; supervised learning
methods are particularly useful to find accurate factor coefficients for asset pricing models
and to calculate asset weights for hedge fund replication [130].

4.4.2. Random Forest (RF)

RFs, as introduced by Ho [123], attempt to predict a dependent variable via a flowchart-
style decision tree, where each node is a binary selector [131]. The prediction power of a
randomly selected subset of independent variables and an optimal binary split on the data
is evaluated to generate a random forest node. Many different functions can be used to
obtain variable predictive power, also depending on whether a regression or classification
tree is used. Regardless of the function used, the concept is to select a variable and split
it to maximize the information gain at each node. The decision tree is built in succession,
repeating these steps to generate new nodes until the specified maximum length is reached.
After one decision tree is generated, the process repeats itself an arbitrary number of times,
and all models are combined into an ensemble. When data are passed to the final model,
every decision tree will produce an output, and the average of each output is used as the
final result, or for classification, the label with the highest number of votes is selected.

Decision trees, and therefore RFs, are non-linear, potentially providing higher-accuracy
models compared to elastic-net and other linear models. However, in practice, RFs tend to
overfit to training data because of the noisy financial data. Zhu et al. [132] suggest that a
model should be selected based upon preliminary data exploration and domain knowledge,
and they outline a new hybrid model that attempts to exploit the benefits of linear and
non-linear models.

4.4.3. Extreme Gradient Boosting (XGB)

XGB builds upon decision trees to efficiently generate gradient-boosted models [124].
XGB also includes optimizations to further improve the performance of gradient boosting
alone. For regression, an initial average value is generated from the training set, and
residuals are recorded. Then, a decision tree is generated using the residuals as leaf nodes.
The initial average is added to the predicted residual, multiplied by a learning rate. The
residuals of these results are recorded, and the previous steps are repeated until the model’s
performance is satisfactory. XGB is a recently developed model, and while it does efficiently
generate decision tree models, there is still room for improvement. Some literature has
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proposed that XGB should be adapted to include evolving data streams, the new adaptation
being coined Adaptive XGBoost (AXGB), which poses an interesting alternative due to its
efficiency in performance, training time, and memory usage [133].

4.4.4. Shapley Additive Explanations (SHAP)

Although sophisticated ML models can provide accuracy unmatched by traditional
statistics, without an explanation of how the model works, it is unlikely to be practically
implemented. Stakeholders may not want to take on the risk of an unexplained model, or
regulators may simply ban the usage of unauditable development pipelines. The model
explainability research stream addresses this problem, with SHAP being a particularly
prolific factor importance metric.

Shapley [134] first introduced Shapley values as a game theory method to fairly
distribute payoffs within a coalition. Fairness is derived by quantifying the impact of each
actor on a final outcome, then gains and losses can be distributed as a ratio of individual
contribution to all other actors. Particular subsets of actors may hold relationships such that
different permutations of actors will have different results. Therefore, every permutation
needs to be generated, then the mean of actor impact is taken, which can be formalized
as follows:

ϕj(v) = ∑
S⊆N\{i}

|S|!(n − |S| − 1)!
n!

(v(S ∪ {i})− v(S)) (12)

where N is a coalition of actors and S is a subset of those actors. i is an individual to identify
their marginal contribution, n is the number of actors, and v(S) represents the contribution
of S.

Data scientists noticed that this game theory approach can be applied directly to
statistical and AI models by replacing the coalition of actors with a vector of independent
variables. However, the Shapley equation is computationally expensive in exponential
time, making it unrealistic to implement for large datasets. To address this problem,
Lundberg and Lee [125] proposed the SHAP method to approximate Shapley values in
polynomial time. Although the exact implementation of Shapley value generation may
differ depending on the software packages used, the core idea stays the same and has been
a leap forward for explainable modeling.

4.4.5. Hierarchical Clustering

Hierarchical clustering is an unsupervised method of defining the cross-section of
expected returns. The concept is to group similar assets together without explicitly defining
the groups a priori. Prado [135] introduces hierarchical clustering within the context
of asset management by developing the Hierarchical Risk Parity (HRP) portfolio, and
Raffinot [127] explains that an accurate asset distance (dissimilarity) function must be
derived for clustering to be effective. Although the distance function can be intuitive for
broader data science contexts (e.g., simple Euclidean distance), financial applications may
benefit from distance functions bespoke to investor preferences. After a distance function is
defined, assets are either placed into a single cluster then iteratively split orthogonality from
each other until the desired threshold of total clusters is found, or each asset starts with
its own cluster that is then iteratively paired with others. Raffinot [127] builds a robust set
of hierarchical clustering techniques along with popular portfolio management strategies
and tests them empirically against US equities. They conclude that hierarchical clustering
offers better diversification and risk-adjusted performance compared to traditional risk
factor-based allocation.

4.4.6. Computer Vision Price Signaling

A CNN is a neural network architecture commonly used to classify images, which
was first developed by Fukushima [136]. CNNs classify images by applying convolutions;
that is, applying filters to an input image to find patterns. This is done in a computationally
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efficient manner by sampling a subset of pixels from the input image via a rolling window.
Any number of filters can be stacked and applied to this subset of pixels. A filter is applied
by multiplying an image pixel by the corresponding filter pixel, then the average value of
all pixels within the rolling window is taken and mapped to a new image, which will be
the output of the convolution layer. A non-linearity layer, usually a Rectified Linear Unit
(ReLU) function, is then applied to normalize outputs to positive values. Next, the CNN
applies pooling to shrink the size of convolution outputs to allow for efficient computing
and increased generalization of filters [137]. This is done by applying a rolling window to
the convolution output of a size greater than 1 × 1. The highest number within the window
is selected, which generates another image to be used as the pooling output. The layers also
do not necessarily need to be in the order outlined above; they can be mixed for different
applications. For example, if processing a particularly low-resolution image, it may not be
desirable to implement a pooling layer after every convolution and normalization.

CNNs have predominantly been used in finance as a method of time-series price
signaling. This is achieved by passing historic asset chart images, along with known t + 1
prices for data labeling, to the CNN, which can be interpreted in a ‘human-like’ manner.
Jiang et al. [128] applied this concept to US stocks backtested from 1993–2019 and found
that a CNN can provide more accurate pricing predictions than traditional risk factor
analysis. These predictions also persisted through time scales and geolocations without the
need to fine-tune the model, and pricing predictors were largely unique to traditional risk
factors, adding portfolio diversification benefits. CNNs show large potential in discovering
novel risk factors that can ultimately be used to develop efficient portfolios and better
risk management.

4.4.7. Reinforcement Learning (RL)

RL models, such as Q-learning and Deep Reinforcement Learning (DRL), are designed
to interact with their environment, with positive (negative) reinforcements provided in
response to desirable (undesirable) behaviors. RL models are commonly used for the
complete removal of financial models from the domain they operate. For example, to
optimize a portfolio using an RL model, a simulation environment is provided without any
prior knowledge of asset pricing or portfolio construction theory, and desirable outcomes
are rewarded until the optimal strategy is found. Given a sufficiently sophisticated model
with a well-designed utility function, RL can optimize any number of inputs to achieve
an optimal outcome. Common limitations of RL include the difficulty of defining a utility
function that advantageously incentivizes long- and short-term rewards and constructing
an accurate simulation environment for training.

Much of the literature surrounding portfolio optimization using RL is not applied to
traditional asset markets or published in top journals, likely because of its unorthodox na-
ture and not due to a lack of potential. Jiang et al. [126] built a RL model for cryptocurrency
markets using historical return data for available coins as a simulation environment. They
defined utility as a function of expected returns and transaction costs. The RL portfolio
outperformed all other benchmarks and achieved 400% returns within a 50-day period.
However, it is difficult to analyze cryptocurrency risk due to the market’s relative immatu-
rity. Everyone stands to make money when the market goes up; however, this does not
necessarily mean that good investment decisions were made.

Alternatively to optimizing a utility function directly, Cheng [138] uses RL to imple-
ment a style integration strategy for cryptocurrencies in which any number of constituent
portfolios can be considered for selection. The optimal style weights are found via a series
of sophisticated preprocessing steps, which are passed to an agent to make the final decision
at each period. Similarly to Jiang et al. [126], Cheng [138] shows very promising results,
with significant opportunities for future research. However, it remains difficult to compare
legacy portfolio strategies on a risk-adjusted basis. Although RL should rightly be met with
caution, it will likely strongly influence the future of portfolio optimization profoundly due
to its unparalleled flexibility.
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4.4.8. Panic Selling Behavioral Analysis

Panic selling is an intuitive behavioral concept whereby neurotic investors sell off large
positions during times of poor market performance. Although there is a healthy pool of literature
dedicated to behavioral finance, little has focused on quantitatively defining panic selling to
obtain potentially useful insights for portfolio managers. Elkind et al. [129] fills this gap in the
literature by analyzing individual brokerage accounts to predict investors who are likely
to ‘freak-out’ in the near future. A novel dataset consisting of demographic attributes,
such as marital status and self-declared investment experience, was used to train a Deep
Neural Network (DNN) and a logistic classifier. The results of this study demonstrated
that there is indeed a disproportionate number of investors who panic sell during market
stress, and subtle indicators can identify these individuals ahead of time. Furthermore, the
DNN outperformed linear classification across all provided metrics.

DNN models were first theorized by Ivakhnenko [139], where multiple layers of
interconnected neurons are trained to minimize the output error by modifying the signal
strength between a connected pair of neurons. DNN algorithms have significant potential
to solve novel problems requiring non-linear relationships to be found due to their ability
to approximate any continuous function [140]. However, a major limitation of DNNs is
the need for large datasets to generalize to the given task appropriately. Although this
problem is not unique to DNNs, its significant number of parameters and large degrees
of freedom exacerbate the need for large and reliable datasets. However, lack of data
availability is a shrinking problem, so DNNs will likely play an influential role in the future
of quantitative portfolio management. They will likely be used primarily to analyze novel
datasets to find approximate solutions to intuitive concepts that are hard to quantify, such as
behavioral trends.

5. Conclusions

Effective portfolio management is essential for the long-term stability of any institution.
Two key components drive performance: information and the processing of information.
This review highlights the capabilities of quantitative strategies to collect and process
information, suggesting the superiority of data-driven approaches over human intuition.
Although the performance of a new investment strategy is difficult to quantify before it is
implemented in the live market, many publications back-test their strategy on historical
data and use the 1/N portfolio as a benchmark. Most investment strategies underperform
relative to the 1/N portfolio on a risk-adjusted basis, and for the ones that outperform,
it is unclear whether performance will persist when others replicate the strategy post-
publication. However, optimists argue that underperformance is often due to research
design and make the point that investors are happy to pay a premium for uncorrelated
returns, making the 1/N portfolio benchmark gratuitous.

Keeping these arguments in mind, 473 quantitative portfolio management publications
were analyzed using a combination of Scopus search queries and tool-assisted investiga-
tions, where four key research themes were identified: portfolio optimization, risk-parity,
style integration, and machine learning. Many profitable and conceptually compelling
models have been proposed, which provide valuable insights into the inner workings of
financial markets. However, these models are limited by the assumptions made by their
guiding economic theory, and they often oversimplify the statistical properties of asset re-
turns, leading to parameter estimation errors. Although techniques to minimize estimation
error can be utilized, the best-performing models treat estimation error as another risk to be
diversified. Alternatively, model restrictions can be introduced, such that any parameters
with large errors are simply removed.

Either way, model flexibility is sacrificed. Machine learning allows portfolio managers
to loosen model assumptions or even do away with legacy financial theory completely.
While black boxes hold greater governance risk, data peculiarities (e.g., non-linearity)
are better modeled with machine learning and ultimately show promising results. Until
recently, the literature has regarded machine learning with a justified degree of caution,
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often over-relying on legacy financial theory. The literature will continue to do so until
novel techniques establish frameworks and garner trust within the broader investment
community. As machine learning matures and begins to be trusted, journals will con-
tinue to loosen their requirements of strict theoretical backgrounds in favor of empirically
driven approaches.
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